
Control Engineering for BME

Midterm Exam
Academic year 2021/2022 1A

Teacher: Rodolfo Reyes-Báez

The exam is designed to last two hours; from 6:30-8:30. The exam will cover the topics
from lecture 1 to lecture 9. Please, read carefully the following information.

• Please write completely your name, student ID number and study program.

• This take-home exam is admissible IF AND ONLY IF you have submitted
the signed statement for participating in the take-home test as commu-
nicated before with the time-stamp before 6:29, October 8th, 2021. You
can find the student statement document in Nestor, under the section ”Midterm”.

• The exam contains four questions with compulsory sub-questions and an optional
sub-question for which extra points can be granted (if correct).

• For every question, write your answer neatly on blank papers and write down your
name and student number on the top of each page.

• This is an OPEN book take-home exam and you are allowed to use calculator
or computer. Please write down your answer clearly and with proper argumenta-
tion/reasoning whenever needed. Providing only the final answers without
proper argumentation is NOT acceptable and will NOT be graded1.

• Please, write your answer using a pen, not a pencil.

• If you are unclear about a specific problem, you can make your own assumptions.
Describe your assumptions at the beginning of your answer. Keep in mind that
if the assumptions are no correct, your solution will not be ether.

• Whenever we think is appropriate, a follow-up ORAL examination to
suspected cases will be arranged before the final grade is determined. In
this case, the follow-up oral examination will be based on the questions
of this exam and the final grade will be based on the same weighting
factor as before where the adjusted grade from the oral examination will
be used instead that replaces the final exam grade.

1Concepts over computations, but both are important.
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• After the exam is finished, you scan the answer of every question and assign it
with the filename: sX1X2X3X4X5X6X7 Y1Y2.pdf , where X1X2X3X4X5X6X7 is
your student number and Y1Y2 is the question number. That is, ONE ques-
tion PER pdf file; four pdf files in total. For instance, if your student number
is s1234567, then the file for exercise 3 is: s1234567 03.pdf.

• After the exam is finished, you have 30 minutes to scan your answers and submit
each pdf file via a Nestor Dropbox link. The time-stamp of your submitted answers
in the Nestor Dropbox determines the admissibility of your exam answers. If you
encounter a problem during the scanning or submission process, let us know as soon
as possible via the Blackboard Collaborate tools or via e-mail r.reyes.baez@rug.nl.
We will not process your answers if the time-stamp of the documents in Nestor
Dropbox is after 21:01, October 9th, 2021. Those students who have the right
for extra time will be able to submit their answer to Nestor Dropbox until 21:31,
October 8th, 2021.

For the grader only
Exercise 1 Exercise 2 Exercise 3 Exercise 4

Points
Bonus
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Exercise 1:

Consider the case of modeling the motion of the private NS train of King Willem Alexander
of the Netherlands. This train consist only of two cars of masses m1 and m2, intercon-
nected by a spring with constant k12 and a damper with constant b12; see the engineering
diagram of Figure 1. The train engine exerts a force F . Note that the friction forces
between the cars’ wheels and tracks are not neglected; this friction forces have coefficients
b1 and b2, respectively.

Figure 1: Two cars interconnected by a spring and a damper.

.

As control engineer, you decide that a good modeling approach of the friction forces is
to interpreting them as damping forces that act on both cars. Then, you propose the
following schematic that models the main forces acting in the overall train.

Figure 2: Schematic diagram of the mass-spring-damper system

.

The equations of motion of this system are

m1q̈1 + b12(q̇1 − q̇2) + b1q̇1 + k12(q1 − q2) = 0

m2q̈2 + b12(q̇2 − q̇1) + b2q̇2 + k12(q2 − q1) = F.
(1)

Show that these are indeed the equation of motion via

1. [1 pts] The Newton’s laws method, that is, mq̈i =
∑
Fk, with Fk the k-th force

and i = 1, 2.

2. [0.5 pts] The Euler-Lagrange method, with the kinetic and potential energies, re-
spectively, given by

K(q̇1, q̇2) =
1

2
m1q̇

2
1 +

1

2
m2q̇

2
2, P (q1, q2) =

1

2
k12(q2 − q1)2, (2)

and Rayleigh dissipation function

R(q̇1, q̇2) =
1

2
b12(q̇2 − q̇1)2 +

1

2
b1q̇

2
1 +

1

2
b2q̇

2
2. (3)
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3. (For bonus [0.25 pts]) Show that the equations of motion in (1) can be rewritten
as

D(q)q̈ + C(q, q̇)q̇ +Bq = Mτ (4)

where q = [q1, q2]
>, C(q, q̇), B and M are matrices of appropriate dimensions, and

τ = [0, F ]>.

Solution:

1. The forces acting on mass m1 are the following: Thus, using the second Newton’s

Forces acting on each mass
m1 −k12q1 k12q2 −b12q̇1 b12q̇2 −b1q̇1
m2 F −k12q2 k12q1 −b12q̇2 b12q̇1 −b2q̇2

law for each mass, we have

m1q̈1 = −k12q1 + k12q2 − b12q̇1 + b12q̇2 − b1q̇1,
m2q̈2 = F − k12q2 + k12q1 − b12q̇2 + b12q̇1 − b2q̇2.

(5)

Grouping with respect the constants k12 and b12, we get

m1q̈1 = −k12(q1 − q2)− b12(q̇1 − q̇2)− b1q̇1,
m2q̈2 = F − k12(q2 − q1)− b12(q̇2 − q̇1)− b2q̇2.

(6)

Arranging all the internal forces the left-hand side, and the external forces to the
left-hand side, ones gets

m1q̈1 + k12(q1 − q2) + b12(q̇1 − q̇2) + b1q̇1 = 0,

m2q̈2 + k12(q2 − q1) + b12(q̇2 − q̇1) + b2q̇2 = F.
(7)

which is indeed the equations of motion in (1).

2. The Lagrangian function is2

L(q1, q2, q̇1, q̇2) = K(q̇1, q̇2)− P (q1, q2),

=
1

2
m1q̇

2
1 +

1

2
m2q̇

2
2 −

1

2
k12(q2 − q1)2.

(8)

We compute the Euler-Lagrange equations with dissipation for q1 and q2, that is,

d

dt

(
∂L

∂q̇k
(qk, q̇k)

)
− ∂L

∂qk
(qk, q̇k) = τk −

∂R

∂q̇k
(qk, q̇k), k ∈ {1, 2}. (9)

For q1 (or k = 1):

∂L

∂q̇1
(q1, q̇1) = m1q̇1 ⇒

d

dt

(
∂L

∂q̇1
(q1, q̇1)

)
= m1q̈1;

∂L

∂q1
(q1, q̇1) = k12(q2 − q1);

∂R

∂q̇k
(qk, q̇k) = −b12(q̇2 − q̇1) + b1q̇1

(10)

2If you computed everything for k12 = 1 in the potential energy, we are taking it as correct.
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Plugging everything into (9), we have

m1q̈1 − k12(q2 − q1) = τ1 + b12(q̇2 − q̇1)− b1q̇1. (11)

The external force is τ1 = 0 for the mass m1. Thus, reordering all the internal forces
to the left-hand side and the external forces to the left,

m1q̈1 + b12(q̇1 − q̇2) + b1q̇1 + k12(q1 − q2) = 0, (12)

which is the first equation in (1).
For q2 (or k = 2) in (9):

∂L

∂q̇1
(q1, q̇1) = m2q̇2 ⇒

d

dt

(
∂L

∂q̇1
(q1, q̇1)

)
= m1q̈1;

∂L

∂q1
(q1, q̇1) = −k12(q2 − q1);

∂R

∂q̇k
(qk, q̇k) = b12(q̇2 − q̇1) + b2q̇2

(13)

Plugging everything into (9), we have

m2q̈1 + k12(q2 − q1) = τ1 − b12(q̇2 − q̇1)− b2q̇2. (14)

The external force is τ1 = F for the mass m2. Thus, reordering all the internal
forces to the left-hand side and the external forces to the left,

m2q̈1 + b12(q̇2 − q̇1) + b2q̇2 + k12(q2 − q1) = F, (15)

which is the second equation in (1).

3. Grouping in matrix the equations of motion in (1), one gets the following[
m1 0
0 m2

]
︸ ︷︷ ︸

D(q)

[
q̈1
q̈2

]
︸︷︷︸
q̈

+

[
b12 + b1 −b12
−b12 b12 + b2

]
︸ ︷︷ ︸

C(q,q̇)

[
q̇1
q̇2

]
︸︷︷︸
q̇

+

[
k12 −k12
−k12 k12

]
︸ ︷︷ ︸

B

[
q1
q2

]
︸︷︷︸
q

=

[
0
1

]
︸︷︷︸
M

F. (16)

Exercise 2:

The metabolism of alcohol in the body can be modeled by the normalized nonlinear
compartmental model

ẋ1 = (x2 − x1) + u,

ẋ2 = (x1 − x2)−
x2

1 + x2
+ u,

(17)

where

• x1, x2 ∈ R are the concentrations of alcohol in the compartment.

• u ∈ R is the intravenous and gastrointestinal injection rate.

Answer the following questions:

1. [1 pts] Given a constant input u, with u positive, determine the operation point
x = [x1, x2]

> of the system. State a condition on u that guarantees the equilibrium
x to have both positive components.
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2. [1 pts] Linearize the nonlinear dynamics of the compartmental model in (17) around
the operation point

x =

[
5
4

1

]
, u =

1

4
. (18)

That is, determine the matrices A,B of the Jacobian linear approximation of (17)
in

δẋ = Aδx+Bδu (19)

Hint: compute directly the matrices A,B, you do not need to do the whole process
as in the lectures.

3. [1 pts] For the linearized system obtained in the previous sub-problem 2.2,

δẋ = Aδx+Bδu. (20)

Analyze the stability of the equilibrium point of the open-loop system. Is it asymp-
totically stable, stable or unstable? What is the expected behavior of the operation
pair in (18) for the nonlinear model in (17)?
Hint: If and only if you did not determine the matrices A,B in sub-problem 2.2,
then use the following ones

A =

[
−3 2
2 −2

]
x, B =

[
1
1

]
. (21)

4. (For bonus [0.5 pts]) Let the output be

δy = δx1. (22)

Compute, if it exist, the steady-state input/output response of the linearized system
to the step function 1(t). That is, the steady-state output response of the linearized
system when δx(0) = x(0) and δu = 1, for all t ≥ 0.

Solution:

1. Note that from the instructions, the nominal constant input u is given, which satis-
fies u > 0; thus, the operational equilibrium (x1, x2) will be a function of the given
input u. It follows that the operation points (x, u) of the nonlinear compartmental
system in (17) are the solution to the set of algebraic equations

0 = (x2 − x1) + u,

0 = (x1 − x2)−
x2

1 + x2
+ u.

(23)

From the first equation, we have that (x2−x1) = −u or (x1−x2) = u. Substitution
of this into the second equation yields

0 = u− x2
1 + x2

+ u ⇐⇒ x2
1 + x2

= 2u, ⇐⇒ x2 = 2u(1 + x2). (24)

Solving for x2 in the last equation, one gets (after some minor computations)

x2 =
2u

1− 2u
. (25)
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To get x1, substitute (25) into the first equation of (23), and solve for x1

0 = (x2 − x1) + u,

x1 =
2u

1− 2u
+ u =

3u− 2u2

1− 2u
.

(26)

Hence, the operation points of the system (17) are

(x, u) =

([
3u−2u2
1−2u
2u

1−2u

]
, u

)
, for u > 0. (27)

To determine conditions on u > 0 such that x1 > 0 and x2 > 0, we solve the
following set of inequalities

x1 =
3u− 2u2

1− 2u
> 0 and x2 =

2u

1− 2u
> 0, (28)

Clearly, x1 > 0 and x2 > 0 if the corresponding numerators and denominators are
positive; in other words, the following conditions must be simultaneously satisfied

3u− 2u2 > 0 and 1− 2u > 0 and 2u > 0 and 1− 2u > 0, (29)

or, equivalently,

3 > 2u and 1 > 2u and u > 0 and 1 > 2u, (30)

where the first and third inequalities follow by virtue of u > 0, and the second and
fourth are the same condition. Then, u must satisfy

3

2
> u and

1

2
> u. (31)

Therefore, x1 > 0 and x2 > 0 if u < 1/2.

2. The operation point for u = 1/4 is given by

x =

[
5
4

1

]
, u =

1

4
. (32)

To find the Jacobian linear approximation of the nonlinear compartmental model
in (17), we simply compute the pair (A,B), and write the linear dynamics of the
incremental state δx = x− x with incremental input δu = u− u. Then,

A =

[
∂
∂x1

[(x2 − x1) + u] ∂
∂x2

[(x2 − x1) + u]
∂
∂x1

[
(x1 − x2)− x2

1+x2
+ u
]

∂
∂x2

[
(x1 − x2)− x2

1+x2
+ u
]]

(x,u)

=

[
−1 1

1 −1− (1+x2)−x2
(1+x2)2

]
(x,u)

=

[
−1 1
1 −5

4

]
.

B =

[
∂
∂u

[(x2 − x1) + u]
∂
∂x1

[
(x1 − x2)− x2

1+x2
+ u
]]

(x,u)

=

[
1
1

]
(x,u)

=

[
1
1

]
.

(33)
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It follows that the Jacobian linear approximation of (17) around the operation point
(32) is the following LTI system

δẋ =

[
−1 1
1 −5

4

]
︸ ︷︷ ︸

A

δx+

[
1
1

]
︸︷︷︸
B

δu. (34)

To analyze the stability of the open-loop system, let us compute the characteristic
polynomial of A for δu = 0.

p(s) = det

{[
s 0
0 s

]
−
[
−1 1
1 −5

4

]}
= det

[
s+ 1 −1
−1 s+ 5

4

]
,

= s2 +
9

4
s+

1

4
.

(35)

Instead of computing the eigenvalues directly, let us use the Routh-Hurwitz criterion

s2 1 1
4

s1 9
4

0
s0 1

4

Since no sign changes in the first column of the Routh’s array, we conclude that the
two eigenvalues lie in the left half complex plane (LHP), and the origin is an asymp-
totically stable. Therefore, by the linearization Lyapunov theorem we conclude that
the equilibrium point x is asymptotically stable for the nonlinar system.

3. For the output δy = δx1, the matrix C is given by C = [1 0]. From the instructions
in Exercise 4 in (64), we know that the input/output response to the step function
for x(0) = 0 is r(t) = CA−1(eAt − I)B. Since A is Hurwitz, the following holds

yss = lim
t→∞

CA−1(eAt − I)B = −CA−1B = −
[
1 0

] [−5 −4
−4 −4

] [
1
1

]
= 9. (36)

Exercise 3:

Consider the linear system

ẋ =

[
1 1
0 0

]
x+

[
b1
b2

]
u, (37)

where x = [x1, x2]
> ∈ R2 is the state vector, u ∈ R is the control input, and y ∈ R is the

measured output, b1, b2 are uncertain parameters.

1. [1 pts] Determine condition on the parameters b1, b2 such that the system is reach-
able using the reachability matrix.

2. [2 pts] Consider the nominal values b1 = 0 and b2 = 1. Determine the gain matrix
K such that the closed-loop system has an input/output response to the step input
u = 1(t) with an overshoot percentage Mp(%OS) = 30% and peak time of Tp = 127
sec. Where are the eigenvalues of the closed-loop matrix Acl = A−BK located?
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3. [1 pts] Close the loop of system of system (37) with the full state feedback control
u = −Kx that you determined in sub-problem 3.2, with b2 = 1 and determine a
condition on b1 such that the closed-loop system remains asymptotically stable.
Hint: If you didnt answer sub-problem 3.2, use K = [9 4].

4. (For bonus [0.5 pts]) Consider the system in (37) with b1 = 0 and b2 = 1. Suppose
that one adds an integral action to the full state feedback u = −[9 4]x, that is,

u = −Kx+

∫ t

0

x1(τ)dτ. (38)

Write the state equations of system (37) in closed-loop with the controller (38).

Solution:

1. The reachability matrix for the LTI system in (37) is

Wr =
[
B

... AB

]
=

[
b1 (b1 + b2)
b2 0

]
(39)

We know that the pair (A,B) is reachable if and only if Wr is full rank. Since the
matrix Wr is 2× 2, the full rank condition is equivalent to prove that det(Wr) 6= 0.
Thus, the following must hold

det(Wr) 6= 0 ⇐⇒ −b1b2 − b22 6= 0,

det(Wr) 6= 0 ⇐⇒ −b1b2 6= b22,

det(Wr) 6= 0 ⇐⇒ −b1 6= b2, for b2 6= 0,

(40)

Hence, the pair (A,B) is reachable if and only if −b1 6= b2 and b2 6= 0.

2. For b1 = 0 and b2 = 1, we get the following system from (37)

ẋ =

[
1 1
0 0

]
x+

[
0
1

]
u. (41)

From sub-problem 3.1, we already know that the pair (A,B) is reachable, otherwise
we would have needed to perform an stabilizability test. The open-loop character-
istic polynomial is

p(s) = s2 − s = s2 + (−1)︸︷︷︸
a1

s+ 0︸︷︷︸
a2

. (42)

Clearly, the necessary condition for stability is not met, and the open-loop system’s
equilibrium point x = 0 is unstable.

To stabilize the equilibrium point and impose a closed-loop input/output time re-
sponse to step function with the above desired performance in terms of the percent-
age of overshoot %OS and the peak time Tp, one can define the target closed-loop
characteristic polynomial

ptg(s) = s2 + 2ωnζs+ ω2
n. (43)
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where the damping ratio ζ and the natural frequency ωn are related to the %OS
and Tp by means of the following formulas3:

ζ =
− ln(%OS/100)√
π2 + ln2(%OS/100)

=
− ln(0.30)√
π2 + ln2(0.30)

= 0.36,

ωn =
π

Tp
√

1− ζ2
=

π

127
√

1− 0.362
= 0.026.

(44)

After substitution of the numerical values of ζ and ω, the target closed-loop char-
acteristic polynomial becomes

ptg(s) = s2 + 0.0187s︸ ︷︷ ︸
α1

+ 0.0007︸ ︷︷ ︸
α2

, (45)

that has the target eigenvalues located at −0.0094± 0.0243.

The control design goal is to match the target characteristic polynomial in (43)
with the closed-loop one via the gain matrix K = [k1 k2]. That is, the characteristic
polynomial of the closed-loop system’s matrix,

Acl = A−BK =

[
1 1
0 0

]
−
[

0 0
k1 k2

]
=

[
1 1
−k1 −k2

]
, (46)

given by

pcl(s) = det

[
s− 1 −1
k1 s+ k2

]
= s2 + (k2 − 1)s+ (k1 − k2). (47)

To match the closed-loop characteristic polynomial in (47) with the target one in
(45), we need to impose the same coefficients via the gains k1 and k2 as follows

k2 − 1 = α1, k1 − k2 = α2, (48)

or

k2 = α1 + 1, k1 = α2 + α1 + 1. (49)

Substitution of the numerical values yields the numerical values of the gains

k2 = 1.0187, k1 = 1.0194. (50)

3. For this item, with b2 = 1, from (37) we get the system

ẋ =

[
1 1
0 0

]
x+

[
b1
1

]
u. (51)

With the gain matrix [k1 k2] = [1.0194 1.0187] of sub-problem 3.2, we get the
following closed-loop matrix

Acl = A−BK =

[
1 1
0 0

]
−
[
b1
1

]
[k1 k2] =

[
1 1
0 0

]
−
[
b1k1 b1k2
k1 k2

]
=

[
1− b1k1 1− b1k2
−k1 −k2

]
.

(52)
The closed-loop characteristic polynomial in this case is

pcl(s) = det

[
s− (1− b1k1) −(1− b1k2)

k1 s+ k2

]
= s2 + (k2− 1 + b1k1)s+ (k1− k2). (53)

Let us use the Routh-Hurwitz criterion to determine conditions on b1 such that (53)
is a strictly stable polynomial. Thus, the Routh’s table is

3See exercise 7 of the tutorial of week 29.
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s2 1 (k1 − k2)
s1 (k2 − 1 + b1k1) 0
s0 (k1 − k2)

From the numerical values of k1, k2 in (50), clearly (k1−k2) > 0. Hence, the constant
b1 must satisfy

k2 − 1 + b1k1 > 0 ⇐⇒ b1 >
1− k2
k1

= −0.0184. (54)

4. In this case, for b1 = 0, b2 = 1, we use the following system

ẋ =

[
1 1
0 0

]
x+

[
0
1

]
u, (55)

with the controller given by4

u = −Kx+

∫ t

0

x1(τ)dτ. (56)

The integral of a state defines another state, thus, the closed-loop system should
have three states. Let xu be the state of the controller. Thus, using this new state,
by the fundamental theorem of calculus, the controller with integral action (56) can
be equivalently rewritten as

ẋu = x1

u = −Kx+ xu.
(57)

Substitution in (55) yields

ẋ =

[
1 1
0 0

]
x+

[
0
1

]
(
[
−9 −4

]
x+ xu),

ẋu = x1,

(58)

or

ẋ =

[
1 1
−9 −4

]
x+

[
0
1

]
xu,

ẋu = x1.

(59)

Arranging everything in matrix form, we get the followingẋ1ẋ2
ẋu

 =

 1 1 0
−9 −4 1
1 0 0

x1x2
xu

 . (60)

Exercise 4:

Consider the system defined by

ẋ = Ax+Bu,

y = Cx
(61)

4This exercise is similar to Exercise 7.2 of tutorial 2
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1. [1 pts] Show that the input/output response of to the ramp function defined as

u(t) = t, t ≥ 0. (62)

is given by
y(t) = CeAtx(0) + C

[
A−2(eAt − I)− A−1t

]
B. (63)

Hint: Consider that
∫ t
0
e−Aτdτ = (I − e−At)A−1 = A−1(I − e−At).

2. [0.5 pts] What is the steady-state output response yss of sub-problem 4.1

3. (For bonus [0.25 pts]) Suppose that the initial conditions are zero, i.e., x(0) = 0.
Show that the output response to the ramp in (63) is the integral of the input/output
response to the unitary step 1(t) given by

r(t) = CA−1(eAt − I)B. (64)

Solution:

1. Solution:
We need to compute the explicit solution to the state equation, i.e.,

x(t) = eAtx(0) +

∫ t

0

eA(t−τ)Bu(τ) · 1(τ)dτ, (65)

for the ramp input u(t) = t1(t), that is,

x(t) = eAtx(0) +

∫ t

0

eA(t−τ)Bτdτ,

= eAtx(0) + eAt
∫ t

0

e−AττdτB.

(66)

Using integration by parts for the indefinite integral∫
e−Aττdτ, (67)

consider the following definitions:

µ = τ dν = e−Atdτ,

dµ = dτ ν =

∫
e−Atdτ.

(68)

Then, ∫
e−Aττdτ = µν −

∫
νdµ (69)

Substitution of the hint in (69) yields∫
e−Aττdτ = τ

[
I − e−Aτ

]
A−1 −

∫ [
I − e−Aτ

]
A−1dτ,

= τ
[
I − e−Aτ

]
A−1 −

∫
A−1dτ +

∫
e−AτdτA−1,

= τA−1 − τe−AτA−1 − A−1τ +
[
I − e−Aτ

]
A−2,

= −τe−AτA−1 +
[
I − e−Aτ

]
A−2.

(70)

12



Thus, we can plug this last expression into (66) as follows

x(t) = eAtx(0) + eAt
∫ t

0

e−AττdτB,

= eAtx(0) + eAt
[
−τe−AτA−1 +

[
I − e−Aτ

]
A−2

]
|τ=tτ=0B,

= eAtx(0) + eAt
[
−te−AtA−1 +

[
I − e−At

]
A−2

]
B,

= eAtx(0) +
[
−teAte−AtA−1 +

[
eAt − eAte−At

]
A−2

]
B,

= eAtx(0) +
[
−tA−1 +

[
eAt − I

]
A−2

]
B,

(71)

From (??), we know that (I− e−Aτ )A−1 = A−1(I− e−Aτ ). This in turn implies that

x(t) = eAtx(0) +
[
−tA−1 +

[
eAt − I

]
A−2

]
B,

= eAtx(0) +
[
−tA−1 + A−1

[
eAt − I

]
A−1

]
B,

= eAtx(0) +
[
−tA−1 + A−2

[
eAt − I

]]
B.

(72)

Therefore, the I/O response to the ramp function is given by

y(t) = CeAtx(0) + C
[
A−2(eAt − I)− A−1t

]
B. (73)

2. A necessary condition for the existence of the steady-state is that A is Hurwitz.
Thus, if A is Hurwitz, eAt → 0 as t → ∞, and all the terms multiplying the
exponential matrix in (73) will vanish. Hence,

yss = lim
t→∞

(
CeAtx(0) + C

[
A−2(eAt − I)− A−1t

]
B
)

= −CA−1Bt. (74)

3. In this exercise, we can compute directly the integral of the I/O response to the
step in (64); or, due to the fundamental theorem of calculus, to differentiate (73)
with respect to the time, and showing that the result is (64). We will proceed as in
the later. Take x(0) = 0 as indicated in the exercise.

dy

dt
(t) =

d

dt

(
C
[
A−2(eAt − I)− A−1t

]
B
)
,

= C
[
A−2(AeAt)− A−1

]
B,

= C
[
A−1eAt − A−1

]
B,

= CA−1
[
eAt − I

]
B,

= r(t).

(75)
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